Enriched Tannaka reconstruction
نویسندگان
چکیده
منابع مشابه
Tannaka Reconstruction for Crossed Hopf Group Algebras
We provide an analog of Tannaka Theory for Hopf algebras in the context of crossed Hopf group coalgebras introduced by Turaev. Following Street and our previous work on the quantum double of crossed structures, we give a construction, via Tannaka Theory, of the quantum double of crossed Hopf group algebras (not necessarily of finite type).
متن کاملTannaka–Krěın reconstruction and a characterization of modular tensor categories
We show that every modular category is equivalent as an additive ribbon category to the category of finite-dimensional comodules of a Weak Hopf Algebra. This Weak Hopf Algebra is finite-dimensional, split cosemisimple, weakly cofactorizable, coribbon and has trivially intersecting base algebras. In order to arrive at this characterization of modular categories, we develop a generalization of Ta...
متن کاملTannaka Duality, Coclosed Categories and Reconstruction for Nonarchimedean Bialgebras
The topic of this paper is a generalization of Tannaka duality to coclosed categories. As an application we prove reconstruction theorems for coalgebras (bialgebras, Hopf algebras) in categories of topological vector spaces over a nonarchimedean field K. In particular, our results imply reconstruction and recognition theorems for categories of locally analytic representations of compact p-adic ...
متن کاملTannaka Reconstruction of Weak Hopf Algebras in Arbitrary Monoidal Categories
We introduce a variant on the graphical calculus of Cockett and Seely[2] for monoidal functors and illustrate it with a discussion of Tannaka reconstruction, some of which is known and some of which is new. The new portion is: given a separable Frobenius functor F : A −→ B from a monoidal category A to a suitably complete or cocomplete braided autonomous category B, the usual formula for Tannak...
متن کاملTannaka Duality Revisited
1.1. Background. The goal of this paper is to investigate algebraic stacks through their associated categories of quasi-coherent sheaves (or, better, complexes). To put this investigation in context, note that an affine scheme is completely determined by its ring of functions. Using merely the ring of functions, though, it is difficult to move beyond affine schemes. However, if one is willing t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 1996
ISSN: 0022-4049
DOI: 10.1016/0022-4049(95)00039-9